Proceedings of the First African Control Conference ROBUST “LINEAR TIME INVARIANT EQUIVALENT” DESIGN FOR A NON-LINEAR MAGNETIC LEVITATOR
نویسنده
چکیده
Horowitz’ linear time invariant equivalent method for quantitative feedback design is successfully applied to achieve robust tracking performance on a non-linear magnetic levitation system. The system is used for teaching and demonstrating control system design. This paper reports on the application in the form of a tutorial.
منابع مشابه
Adaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملRobust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties
In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملRobust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM
This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...
متن کاملOffset-free control of constrained linear discrete-time systems subject to persistent unmeasured disturbances - Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
This paper addresses the design of a dynamic, nonlinear, time-invariant, state feedback controller that guarantees constraint satisfaction and offset-free control in the presence of unmeasured, persistent, non-stationary, additive disturbances. First, this objective is obtained by designing a dynamic, linear, time-invariant, offset-free controller, and an appropriate domain of attraction for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003